Showing posts with label Objective-C. Show all posts
Showing posts with label Objective-C. Show all posts

Wednesday, February 20, 2019

An Unexpected Benefit of Uniform Interfaces

In the previous post, My Objective-Smalltalk Tipping Point: Scheme Handler for a Method Browser, I described how I had reached a point where Objective-Smalltalk code is just so much better than the equivalent Objective-C that the idea of porting back some Objective-Smalltalk to Objective-C in order to better integrate with the surrounding Objective-C code seems a bit abhorrent.

So instead I have chosen to just integrate the code into that Objective-C code base. So load the code:


NSData *classdefSchemeCode=[self frameworkResource:@"classdef-method-browser-scheme" category:@"stsh"];
[interpreter evaluateScriptString:[classdefSchemeCode stringValue]];

Then instantiate the class after finding it reflectively via NSClassFromString()
-(void)awakeFromNib
{
	...
    self.methodStore = [NSClassFromString(@"ClassBrowser") store];
}

So far, so easy. Of course, the big problem with bridged code usually comes now: the compiler doesn't know about code loaded at runtime, so you need to somehow duplicate the class's interface and somehow convince the compiler that the newly loaded class conforms to that interface.

But wait! This is a scheme-handler, which is a store, meaning it doesn't really have any unique interface of its own, but rather just implements the MPWStorage protocol. So all I have to do is the following:


@property (nonatomic, strong)   id  methodStore;

And I'm good to go!

This is unexpected in two ways: first, the integration pain I was expecting just didn't appear. Happy. Second, and maybe more importantly, the benefit of uniform interfaces, which I thought should appear, actually did appear!

So very happy.

Friday, February 8, 2019

A small (and objective) taste of Objective-Smalltalk

I've been making good progress on Objective-Smalltalk recently. Apart from the port to GNUstep that allowed me to run the official site on it (shrugging off the HN hug of death in the process), I've also been concentrating on not just pushing the concepts further, but also on adding some of the more mundane bits that are just needed for a programming language.

And so my programs have been getting longer and more useful, and I am starting to actually see the effect of "I'd rather write this on Objective-Smalltalk than Objective-C". And with that, I thought I'd share one of these slightly larger examples, show how it works, what's cool and possibly a bit weird, and where work is still needed (lots!).

The code I am showing is a script that implements a generic scheme handler for sqlite databases and then uses that scheme handler to access the database given on the command line. When you run it, in this case with the sample database Chinook.db, it allows you to interact with the database using URIs using the db scheme. For example, db:. lists the available tables:


> db:. 
( "albums","sqlite_sequence","artists","customers","employees","genres","invoices",
 "invoice_items","media_types","playlists","playlist_track","tracks","sqlite_stat1") 

You can then access entire tables, for example db:albums would show all the albums, or you can access a specific album:
> db:albums/3
{ "AlbumId" = 4;
"Title" = "Let There Be Rock";
"ArtistId" = 1;
} 

With that short intro and without much further ado, here's the code :


#!/usr/local/bin/stsh
#-sqlite:<ref>dbref

framework:FMDB load.


class ColumnInfo {
  var name.
  var type.
  -description {
      "Column: {var:self/name} type: {var:self/type}".
  }
}

class TableInfo  {
  var name.
  var columns.
  -description {
    cd := self columns description.
    "Table {var:self/name} columns: {cd}".
  }
}

class SQLiteScheme : MPWScheme {
  var db.

  -initWithPath: dbPath {
     self setDb:(FMDatabase databaseWithPath:dbPath).
     self db open.
     self.
  }

  -dictionariesForResultSet:resultSet
  {
    results := NSMutableArray array.
    { resultSet next } whileTrue: { results addObject:resultSet resultDictionary. }.
    results.
  }

  -dictionariesForQuery:query {
     self dictionariesForResultSet:(self db executeQuery:query).
  }

  /. { 
     |= {
       resultSet := self dictionariesForQuery: 'select name from sqlite_master where [type] = "table" '.
       resultSet collect at:'name'.
     }
  }

  /:table/count { 
     |= { self dictionariesForQuery: "select count(*) from {table}" | firstObject | at:'count(*)'. }
  }

  /:table/:index { 
     |= { self dictionariesForQuery: "select * from {table}" | at: index. }
  }

  /:table { 
     |= { self dictionariesForQuery: "select * from {table}". }
  }

  /:table/:column/:index { 
     |= { self dictionariesForQuery: "select * from {table}" | at: index.  }
  }

  /:table/where/:column/:value { 
     |= { self dictionariesForQuery: "select * from {table} where {column} = {value}".  }
  }

  /:table/column/:column { 
     |= { self dictionariesForQuery: "select {column} from {table}"| collect | at:column. } 
  }

  /schema/:table {
     |= {
        resultSet := self dictionariesForQuery: "PRAGMA table_info({table})".
	    columns := resultSet collect: { :colDict | 
            #ColumnInfo{
				#'name': (colDict at:'name') ,
				#'type': (colDict at:'type')
			}.
        }.
        #TableInfo{ #'name': table, #'columns': columns }.
     }
  } 

  -tables {
	 db:. collect: { :table| db:schema/{table}. }.
  }
  -<void>logTables {
     stdout do println: scheme:db tables each.	
  }
}

extension NSObject {
  -initWithDictionary:aDict {
    aDict allKeys do:{ :key |
      self setValue: (aDict at:key) forKey:key.
    }.
    self.
  }
}


scheme:db := SQLiteScheme alloc initWithPath: dbref path.
stdout println: db:schema/artists
shell runInteractiveLoop.


Let's walk through the code in detail, starting with the header:
#!/usr/local/bin/stsh
#-sqlite:<ref>dbref

This is a normal Unix shell script invoking stsh, the Smalltalk Shell. The Smalltalk Shell is a bigger topic for another day, but for now let's focus on the second line, which looks like a method declaration, and that's exactly what it is! In order to ease the transition between small scripts and larger systems (successful scripts tend to get larger, and successful large systems evolve from successful small systems), scripts have a dual nature, being at the same time callable from the Unix command line and also usable as a method (or filter) from a program.

Since this script is interactive, that part is not actually that important, but a nice side effect is that the declaration of a parameter gets us automatic command-line parameter parsing, conversion, and error checking. Specifically, stsh knows that the script takes a single parameter of type <ref> (a reference, so a filename or URL) and will put that in the dbref variable as a reference. If the script is invoked without that parameter, it will exit with an error message, all without any further work by the script author. These declarations are optional, without them parameters will go into an args array without further interpretation.

Next up, we load a dependency, Gus Mueller's wonderful FMDB wrapper for SQLite.


framework:FMDB load.

The framework scheme looks for frameworks on the default framework path, and the load message is sent to the NSBundle that is returned.

The next bit is fairly straightforward, defining the ColumnInfo class with two instance variables, name and type, and a -descritpion method.


class ColumnInfo {
  var name.
  var type.
  -description {
      "Column: {var:self/name} type: {var:self/type}".
  }
}

Again, this is very straightforward, with maybe the missing superclass specification being slightly unusual. Different constructs may have different implicit superclasses, for class it is assumed to be NSObject. The description method, introduced by "-" just like in Objective-C, uses string interpolation with curly braces. (I currently need to use fully qualified names like var:self/name to access instance variables, that should be fixed in the near future). It also doesn't have a return statement or the like, a method return can be specified by just writing out the return value.

To me, this has the great effect of putting the focus on the essential "this is the description" rather than on the incidental, procedural "this is how you build the description". It is obviously only a very small instance of this shift, but I think even this small examples speaks to what that shift can look like in the large.

The way instance variables are defined is far from being done, but for now the var syntax does the job. The TableInfo class follows the same pattern as ColumnInfo, and of course these two classes are used to represent the metadata of the database.

So on to the main attraction, the scheme-handler itself, which is just a plain old class inheriting from MPWScheme, with an instance variable and an initialisation method:


class SQLiteScheme : MPWScheme {
  var db.

  -initWithPath: dbPath {
     self setDb:(FMDatabase databaseWithPath:dbPath).
     self db open.
     self.
  }

Having advanced language features largely defined as/by plain old classes goes back to the need for a stable starting point. However, it has turned out to be a little bit more than that, because the mapping to classes is not just the trivial one of "since this written in on OO language, obviously the implementation of features is somehow done with classes". Instead, the classes map onto the language features very much in an Open Implementation kind of way, except that in this case it is Open Language Implementation.

That means that unlike a typical MOP, the classes actually make sense outside the specific language implementation, making their features usable from other languages, albeit less conveniently. Being easily accessible from other languages is important for an architectural language.

With this mapping, a very narrow set of syntactic language mechanism can be used to map a large and extensible (thus infinite) set of semantic features into the languages. This is of course similar to language features like procedures, methods and classes, but is expanded to things that usually haven't been as extensible.

The next two methods handle the interface to FMDB, they are mostly straightforward and, I think, understandable to both Smalltalk and Objective-C programmers without much explanation.


  -dictionariesForResultSet:resultSet
  {
    results := NSMutableArray array.
    { resultSet next } whileTrue: { results addObject:resultSet resultDictionary. }.
    results.
  }

  -dictionariesForQuery:query {
     self dictionariesForResultSet:(self db executeQuery:query).
  }

Smalltalk programmers may balk a little at the use of curly braces rather than square brackets to denote blocks. To me, this is a very easy concession to "the mainstream"; I have bigger fish to fry. To Objective-C programmers, the fact that the condition of the while-loop is implemented as a message sent to a block rather than as syntax might take a little getting used to, but I don't think it presents any fundamental difficulties.

Next up we have some property path definitions, the meat of the scheme handler. Each property path lets you define code that will run for a specific subset of the scheme's namespace, with the subset defined by the property path's URI pattern. As the name implies, property paths can be regarded as a generalisation of Objective-C properties, extended to handle both entire sets of properties, sub-paths and the combination of both.


  /. { 
     |= {
       resultSet := self dictionariesForQuery: 'select name from sqlite_master where [type] = "table" '.
       resultSet collect at:'name'.
     }
  }

The first property path definition is fairly straightforward as it only applies to a single path, the period (so the db:. example from above). Property path definitions start with the forward slash ("/"), similar to the way that instance methods start with "-" and class methods with "+" in Objective-C (and Objetive-Smalltalk). The slash seemed natural to indicate the definition of paths/URIs.

Like C# or Swift property definitions, you need to be able to deal with (at least) "get" and/or "set" access to a property. I really dislike having random keywords like "get" or "set" for program structure, I prefer to see names reserved for things that have domain meaning. So instead of keywords, I am using constraint connector syntax: "|=" means the left hand side is constrained to be the same as the right hand side (aka "get"). "=|" means the right hand side is constrained to be the same as the left hand side (aka "set"). The idea is that the "left hand side" in this case is the interface, the outside of the object/scheme handler, whereas the "right hand side" is the inside of the object, with properties mediating between the outside and the inside of the object.

As most everything, this is currently experimental, but so far I like it more than I expected to, and again, it shifts us away from being action oriented to describing relationships. For example, delegating both get and set to some other object could then be described by using the bidirectional constraint connector: /myProperty =|= var:delegate/otherroperty.

Getting the result set is a straightforward message-send with the SQL query as a constant, non-interpolated string (single quotes, double quotes is for interpolation). We then need to extract the name of the table from the return dictionaries, which we do via the collect HOM and the Smalltalk-y -at: message, which in this case maps to Foundation's -objectForKey:. The next property paths map URIs to queries on the tables. Unlike the previous example, which had a constant, single element path and so was largely equivalent to a classic property, these all have variable path elements, multiple path segments or both.


  /:table/count { 
     |= { self dictionariesForQuery: "select count(*) from {table}" | firstObject | at:'count(*)'. }
  }

  /:table/:index { 
     |= { self dictionariesForQuery: "select * from {table}" | at: index. }
  }

  /:table { 
     |= { self dictionariesForQuery: "select * from {table}". }
  }

Starting at the back, /:table returns the data from the entire table specified in the URI using the parameter :table. The leading semicolon means that this path segment is a parameter that will match any single string and deliver it the method as the parameter name used, in this case "table". Wildcards are also possible.

Yes, the SQL query is performed using simple string interpolation without any sanitisation. DON'T DO THAT. At least not in production code. For experimenting in an isolated setting it's OK.

The second query retrieves a specific row of the table specified. The pipe "operator" is for method chaining with keyword syntax without having to bracket like crazy:


self dictionariesForQuery: "select count(*) from {table}" | firstObject | at:'count(*)'
((self dictionariesForQuery: "select count(*) from {table}") firstObject) at:'count(*)'

I find the "pipe" version to be much easier to both just visually scan and to understand, because it replaces nested (recursive) evaluation with linear piping. And yes, it is at least partly a by-product of integrating pipes/filters, which is a part of the larger goal of smoothly integrating multiple architectural styles. That this integration would lead to an improvement in the procedural part was an unexpected but welcome side effect.

The first property path, /:table/count returns the size of the given table, using the optimised SQL code select count(*). This shows an interesting effect of property paths. In a standard ORM, getting the count of a table might look something like this: db.artists.count. Implemented naively, this code retrieves the entire "artists" table, converts that to an array and then counts the array, which is incredibly inefficient. And of course, this was/is a real problem of many ORMs, not just a made up example.

The reason it is a real problem is that it isn't trivial to solve, due to the fact that OOPLs are not structurally polymorphic. If I have something like db.artists.count, there has to be some intermediate object returned by artists so I can send it the count message. The natural thing for that is the artists table, but that is inefficient. I can of course solve this by returning some clever proxy that doesn't actually materialise the table unless it has to, or I can have count handled completely separately, but neither of these solutions are straightforward, which is why this has traditionally been a problem.

With property paths, the problem just goes away, because any scheme handler (or object) has control over its sub-structure to an arbitrary depth.

Queries are handled in a similar matter, so db:albums/where/ArtistId/6 retrieves the two albums by band Apocalyptica. This is obviously very manual, for any specific database you'd probably want to specialise this generic scheme handler to give you named relationships and also to return actual objects, rather than just dictionaries. A step in that direction is the /schema/:table property path:


  /schema/:table {
     |= {
        resultSet := self dictionariesForQuery: "PRAGMA table_info({table})".
	    columns := resultSet collect: { :colDict | 
            #ColumnInfo{
				#'name': (colDict at:'name') ,
				#'type': (colDict at:'type')
			}.
        }.
        #TableInfo{ #'name': table, #'columns': columns }.
     }
  } 

This property path returns the SQL schema in terms of the objects we defined at the top. First is a simple query of the SQLite table that holds the schema information, returning an array of dictionaries. These individual dictionaries are then converted to ColumnInfo objects using object literals.

Similar to defining the -description method above as simple the parametrized string literal instead of as instructions to build the result string, object literals allow us to simple write down general objects instead of constructing them. The example inside the collect defines a ColumnInfo object literal with the name and type attributes set from the column dictionary retrieved from the database.

Similarly, the final TableInfo is defined by its name and the column info objects. Object literals are a fairly trivial extension of Objective-Smalltalk dictionary literals, #{ #'key': value }, with a class-name specified between the "#" and the opening curly brace. Being able to just write down objects is, I think, one of the better and under-appreciated features of WebObjects .wod files (though it's not 100% the same thing), as well as QML and I think also part of what makes React "declarative".

Not entirely coincidentally, the "configurations" of architectural description languages can also be viewed as literal object definitions.

With that information in hand, and with the Objective-Smalltalk runtime providing class definition objects that can be used to install objects with utheir methods in the runtime, we now have enough information to create some classes straight from the SQL table definitions, without going through the intermediate steps of generating source code, adding that to a project and compiling it.

That isn't implemented, and it's also something that you don't really want, but it's a stepping stone towards creating a general mechanism for orthogonal modular persistence. The final two utility methods are not really all that noteworthy, except that they do show how expressive and yet straightforward even ordinary Objective-Smalltalk code is.


  -tables {
	 db:. collect: { :table| db:schema/{table}. }.
  }
  -<void>logTables {
     stdout do println: scheme:db tables each.	
  }

The -tables method just gets the all the schema information for all the tables. The -logTables methods prints all the tables to stdout, but individually, not as an array. Finally, there is a class extension to NSObject that supports the literal syntax on all objects and the script code that actually initialises the scheme with a database and starts an interactive session. This last feature has also been useful in Smalltalk scripting: creating specialized shells that configure themselves and then run the normal interactive prompt.

So that's it!

It's not a huge revelation, yet, but I do hope this example gives at least a tiny glimpse of what Objective-Smalltalk already is and of what it is poised to become. There is a lot that I couldn't cover here, for example that scheme-handlers aren't primarily for interactive exploration, but for composition. I also only mentioned pipes-and-filters in passing, and of course there "is" a lot more that just "isn't" there, quite yet.

As always, but even more than usual, I would love to get feedback! And of course the code is on github

Wednesday, February 6, 2019

Why Objective-Smalltalk is (not) a Smalltalk

One of the main goals of Objective-Smalltalk is to make it possible to express programs in mixtures of diverse architectural styles, and variations of those styles, naturally and comprehensibly. That needs a mechanism that abstracts from any specific style, while at the same time accommodating all, or at least a wide variety of styles.

I don't know how to do that.

Yet.

A Smalltalk

Since I don't know how to do that yet, I can't build what I need, and since I can't build what I need I can't experiment with it and learn how to do what I need to do.

Instead of waiting for divine inspiration, designing something from thin air (that will obviously be perfect) or just throwing my hands up in despair, I need to pick some starting point from which I can start iterating. In terms of styles, there are a few to choose from, for example call-return, pipes-and-filters and REST. Call-return seems like an obvious choice, because it is something that is familiar, has widespread support and is very capable of implementing other styles.

Objective-C would have been a pleasant choice: I am very familiar with it and it is very suitable for building architectural and language adapters. This suitability is not an accident either, connectivity was the primary design goal, and the designers succeeded admirably given the constraints.

However, Objective-C also has significant drawbacks as a starting point: having already merged two languages, Smalltalk and C, it is rather large and unwieldy, with weird overlaps and other oddities. Being a superset of C, it also pretty much demands being compiled, whereas I want at least the option of interpretation.

WebScript would be an alternative, but it is not just dead, but also proprietary. It also very closely mimics the somewhat baroque Objective-C syntax, but without the actual reasons for those syntactic compromises or the benefits that this sacrifice brings in Objective-C.

These and most other existing language choices would mean extending an existing language, grammar and implementation, meaning that the architectural features of the language would be almost certainly be 2nd class citizens, being tacked on wherever they can fit. That's not a good starting point (see: Objective-C).

So it really had to be a brand new language, one whose syntax and semantics would be under full control, and a syntactic starting point for the procedural part of that language. For this, I don't know of a better choice than the Smalltalk (keyword) message syntax. The syntax itself is tiny, with almost no reserved words or special characters reserved by the language, and almost all "language" features implemented as objects and messages without special syntax.

Having the procedural base as trivial as possible to implement is important, because I don't want to spend too much effort on it. I have (much) bigger fish to fry. Smalltalk also integrates well conceptually and syntactically with Cocoa and Objective-C, my preferred environment, a point not lost on the plethora of Smalltalk-based scripting languages available for Cocoa and GNUstep. And having a rich environment to integrate with is important for a language intended to connect existing pieces, which is what an architectural language does, or should do.

Not a Smalltalk

So given all the arguments for Smalltalk, surely Objective-Smalltalk is based on one of the existing Smalltalks, such as Squeak, enjoying the great development environment, malleable infrastructure etc.

Not so fast.

Although Smalltalk fits very well conceptually and syntactically, it doesn't fit at all well technically. It generally runs in its own world, the image, requires a complex and sophisticated VM, with all the integration headaches that entails (FFI, JNI, etc.), and comes with and requires a GC. Integrating multiple tracing GCs is essentially an unsolved problem, so that's a bit of a downer for a language that wants to be able to glue existing pieces together.

The philosophy of current Smalltalks is the exact opposite: it wants to be the entire world. This is understandable: when Smalltalk was created there simply wasn't a "rest of the world" to talk to, and there certainly wasn't room for it on the same machine, an Alto with 128-512KB of RAM and a 2.5MB removable hard disk.

A current Smalltalk has a lot of code, and communities that think it's just the greatest thing on earth, so resistance to change is significant and reasonable, both to smaller changes, because they just aren't worth it in that context, and to larger changes because they make things just too different. However, I want to make both large and small changes and not be hobbled by linguistic backwards compatibility.

[..] when ST hit the larger world, it was pretty much taken as "something just to be learned", as though it were Pascal or Algol. Smalltalk-80 never really was mutated into the next better versions of OOP. Given the current low state of programming in general, I think this is a real mistake.
Alan Kay: prototypes vs classes was: Re: Sun's HotSpot

So Objective-Smalltalk takes cues from Smalltalk where this is helpful, but it is not really a new version of Smalltalk. It's not a "better old thing" (>45 years), but a (probably worse) "new thing", and for that reason it has to strike out on its own.

Thursday, January 10, 2019

Objective-Smalltalk on Linux via GNUstep and Docker

Although Objective-Smalltalk's architectural orientation should be an ideal fit for The Cloud™, this has been largely theoretical in recent times as Objective-Smalltalk only ran on macOS and iOS.

Having used both GNUstep and Cocotron to port, for example, MusselWind to Linux in the past, I knew this wasn't an insurmountable probl...er opportunity. However, dealing with VMs and OSes, and configurations getting everything to compile was always painful, and usually not reproducible.

Enter Docker for Mac. I had obviously heard quite a bit about Docker, but so far never had an opportunity to actually try it out in anger. Well, maybe not "anger", more "mild chagrin", because Docker is not really meant for running Linux binaries on your Mac. However, it does that job really, really well. Instead of futzing around with VMs, dealing with special guest OS tools in order to get window sizes to match, Retina not working, displays not resizing etc. you just get a login onto a Linux "box" right in your Terminal window, no muss no fuss. Nice. And mounting directories from the Mac is also trivial. Niiiice.

The other part that makes this different is the whole idea of reproducibility via Dockerfiles. Because a container is at least conceptually ephemeral (practically you can keep it around for quite a bit), you don't capture your knowledge in the state of the VM you are working on. Instead, you accumulate the knowledge in the Dockerfile(s) used to construct your image.

The Dockerfile for creating a GNUstep image/container that is capable of compiling + running Objective-Smalltalk can be found here:

https://github.com/mpw/MPWFoundation/tree/master/GNUstep/gnustep-combined
The main Dockerfile loads first loads a bunch of packages via apt-get:
FROM ubuntu

ENV LC_ALL en_US.UTF-8
ENV LANG en_US.UTF-8
ENV TZ 'Europe/Berlin'
RUN ln -snf /usr/share/zoneinfo/$TZ /etc/localtime && echo $TZ > /etc/timezone


RUN apt-get update && apt-get install -y \
    git \
    make \
    ssh \
    sudo \
    curl \
    inetutils-ping \
    vim build-essential  \
    clang llvm libblocksruntime-dev libkqueue-dev libpthread-workqueue-dev libxml2-dev cmake \
    libffi-dev \
    libreadline6-dev \
    libedit-dev \
    libmicrohttpd-dev \
    gnutls-dev 


RUN useradd -ms /bin/bash gnustep

COPY install-gnustep-clang /home/gnustep/
RUN chmod u+x /home/gnustep/install-gnustep-clang
RUN /home/gnustep/install-gnustep-clang  

COPY bashrc /home/gnustep/.bashrc
COPY profile /home/gnustep/.profile
COPY bashrc /root/.bashrc
COPY profile /root/.profile
COPY bashrc /.bashrc
COPY profile /.profile

COPY build-gnustep-clang /home/gnustep/build-gnustep-clang
RUN  mkdir -p /home/gnustep/patches/libobjc2-1.8.1/
COPY patches/libobjc2-1.8.1/objcxx_eh.cc /home/gnustep/patches/libobjc2-1.8.1/objcxx_eh.cc

RUN chmod u+x /home/gnustep/build-gnustep-clang
RUN /home/gnustep/build-gnustep-clang  


COPY build-gnustep-clang /home/gnustep/build-gnustep-clang
RUN  mkdir -p /home/gnustep/patches/libobjc2-1.8.1/
COPY patches/libobjc2-1.8.1/objcxx_eh.cc /home/gnustep/patches/libobjc2-1.8.1/objcxx_eh.cc

RUN chmod u+x /home/gnustep/build-gnustep-clang
RUN /home/gnustep/build-gnustep-clang  

CMD ["bash"]

It adds a user "gnustep", then runs a script that will downloads specific version of the gnustep and libobjc2 sources using a script, patches one of those sources which wouldn't compile for me and finally builds and installs the whole thing using another script, both adapted from Tobias Lensing's post.


#!/bin/bash
#


cd /home/gnustep/

echo Installing gnustep-make
export CC=clang
echo compiler is $CC

tar zxf gnustep-make-2.7.0.tar.gz
cd gnustep-make-2.7.0
./configure
make install
cd ..

echo 
echo 
echo ======================
echo Installing libobjc2


tar zxf libobjc2-1.8.1.tar.gz
cp patches/libobjc2-1.8.1/* libobjc2-1.8.1/
cd libobjc2-1.8.1
mkdir Build
cd Build
# cmake -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang -DTESTS=OFF -DLLVM_OPTS=OFF  ..
cmake -DTESTS=OFF .. 
make install
cd ../..


cd gnustep-make-2.7.0
make clean
./configure --with-library-combo=ng-gnu-gnu
make install
cd ..

source /usr/local/share/GNUstep/Makefiles/GNUstep.sh
tar zxf gnustep-base-1.25.1.tar.gz 
cd gnustep-base-1.25.1
./configure
make installn
cd ..

echo Installation script finished successfully

One of the tricky bits about this is that you need to install the gnustep-make package twice, first to get libobjc2 to install, the second time with libobjc2 installed so all the other packages find the right runtime. The apt-get packages did not work for me, because I needed newer compiler/runtime features.

Once you have the image, you can start it up and log into it. I then su -l to the gnustep account and work with the MPWFoundation, ObjectiveSmalltalk and ObjectiveHTTPD mounted from my local filesystem, rather than having separate copies inside the container.

Not everything is ported, but basic expressions work, as does messaging back and forth between Objective-Smalltalk and Objective-C, Higher Order Messaging, etc. Considering some of the runtime trickery involved, I was surprised how straightforward it was to get this far.

In the future, I expect to also build a runtime image that has the libraries and executable pre-built.

Sunday, December 23, 2018

A Minimal Test Runner

A long time ago when I was working a MPWTest, "The simplest Objective-C Unit Test Framework that could possibly work...", I had a brief chat with Kent Beck about it, and one of the things he said was that everyone should build their own unit test "framework".

Why the scare quotes?

If your testing framework is actually a framework, it's probably too big. I recently started porting MPWFoundation and Objective-Smalltalk to GNUstep again, in order to get it running In the Cloud™. In order to see how it's going, it's probably helpful to run the tests.

Initially, I needed to test some compiler issues with such modern amenities as keyed subscripting of dictionaries:


#import <Foundation/Foundation.h>

int main( int argc, char *argv[] ) {
  MPWDictStore *a=[MPWDictStore store];
  a[@"hi"]=@"there";
  NSLog(@"hi: %@",a[@"hi"]);
  return 0;

}

Once that was resolved with the help of Alex Denisov, I wanted to minimally run some tests, but the idea of first getting all of MPWTest to run wasn't very appealing. So instead I just did the simplest thing that could possible work:
static void runTests()
{
  int tests=0;
  int success=0;
  int failure=0;
  NSArray *classes=@[
    @"MPWDictStore",
    @"MPWReferenceTests",
  ];

  for (NSString *className in classes ) {
    id testClass=NSClassFromString( className );
    NSArray *testNames=[testClass testSelectors];
    for ( NSString *testName in testNames ) {
      SEL testSel=NSSelectorFromString( testName );
      @try {
        tests++;
        [testClass performSelector:testSel];
        NSLog(@"%@:%@ -- success",className,testName);
        success++;
      } @catch (id error)  {
        NSLog(@"%@:%@ == failure: %@",className,testName,error);
        failure++;
      }
    }

  }
  printf("\033[91;3%dmtests: %d total, %d successes %d failures\033[0m\n",
         failure>0 ? 1:2,tests,success,failure);
}

That's it, my minimal testrunner. With hard-coded list of classes to test. In a sense, that is the entire "test framework", the rest just being conventions followed by classes that wish to be tested.

And of course MPWTest's slogan was a bit...optimistic.

Sunday, November 11, 2018

Refactoring Towards Language

When implementing MVC in iOS and macOS, one common pattern is to use NSNotification to implement the notification that the model has changed and the view should redraw itself. This is a good pattern, as that is how MVC is intended to work, but it does lead to quite a bit of boilerplate in this incarnation.

Specifically, you typically have some version of the following code in one of the initialisation methods of your ViewControllers, which play the MVC role of the View in Cocoa and Cocoa Touch.


- (void)viewDidLoad
{
	...
    [[NSNotificationCenter defaultCenter] addObserver:self
                                             selector:@selector(modelDidChange:)
                                                 name:MPWAppNotificationModelDidChange
                                               object:nil];
	...
}

Refactor I

That's all good, except that you tend to repeat that code in every single ViewController, and there are usually quite a few of them. So one way of avoiding all that duplication is to refactor by extracting the duplicated functionality into a method.
- (void)subscribeToModelDidChangeNotification
{
    [[NSNotificationCenter defaultCenter] addObserver:self
                                             selector:@selector(modelDidChange:)
                                                 name:MPWAppNotificationModelDidChange
                                               object:nil];
}


- (void)unsubscribeFromModelDidChangeNotification
{
    [[NSNotificationCenter defaultCenter] removeObserver:self
                                                    name:MPWAppNotificationModelDidChange
                                                  object:nil];
}

- (void)subscribeToModelWasDeletedNotification
{
    [[NSNotificationCenter defaultCenter] addObserver:self
                                             selector:@selector(modelDidChange:)
                                                 name:MPWAppNotificationModelWasDeleted
                                               object:nil];
}


- (void)unsubscribeFromModelWasDeletedNotification
{
    [[NSNotificationCenter defaultCenter] removeObserver:self
                                                    name:MPWAppNotificationModelWasDeleted
                                                  object:nil];
}
...

Refactor II

The interesting thing that happens when you remove duplication is that it will often reveal more duplication. In particular, if you look at more of these, you will notice that the method bodies are largely identical. You always send a message to the defaultCenter of the NSNotificationCenter class, you pretty much always add yourself as the Observer, and I've rarely seen the object: parameter used. The only things that vary are the selector to send and the name of the notification.
    [[NSNotificationCenter defaultCenter] addObserver:self
                                             selector: <some selector>
                                                 name: <some notification>
                                               object:nil];


So yet another classic case for refactoring by extracting a helper method that encapsulates the things that do not change and takes the things that do vary as arguments.
-(void)subscribeToNotification:(NSString *)notificationName usingSelector:(SEL)selectorName
{
    [[NSNotificationCenter defaultCenter] addObserver:self
                                             selector:selectorName
                                                 name:notificationName
                                               object:nil];
}

We can also apply the same refactoring to unsubscribing.
-(void)unsubscribeFromNotification:(NSString *)notificationName
{
    [[NSNotificationCenter defaultCenter] removeObserver:self
                                                    name:notificationName
                                                  object:nil];
}

With the parameters extracted, our helper methods simplify to the following.
- (void)subscribeToModelDidChangeNotification
{
    [self subscribeToNotification: MPWAppNotificationModelDidChange usingSelector:@selector(modelDidChange:)];
}

- (void)unsubscribeFromModelDidChangeNotification
{
    [self unsubscribeFromNotification: MPWAppNotificationModelDidChange];
}

- (void)subscribeToModelWasDeletedNotification
{
    [self subscribeToNotification: MPWAppNotificationModelWasDeleted usingSelector:@selector(modelDidChange:)];
}

- (void)unsubscribeFromModelWasDeletedNotification
{
    [self unsubscribeFromNotification: MPWAppNotificationModelWasDeleted];
}

Refactor III

As happens very often when you extract code and remove duplication we discover more duplication that was previously somewhat hidden, for example because code that was too far away to really notice the duplication is now close enough together to make it more obvious. Specifically: we always define the same methods: subscribeTo<notification> and unsubscribeFrom<notification>. We also repeat the notification name in each of the method names, and also in each of the method bodies (with different prefixes/suffixes).
- (void)subscribeTo<notification-name>Notification
{
    [self subscribeToNotification: MPWAppNotification<notification-name> usingSelector:@selector(<notification-selector>:)];
}

- (void)unsubscribeFrom<notification-name>Notification
{
    [self unsubscribeFromNotification: MPWAppNotification<notification-name>];
}
- (void)<notification-selector>:(NSNotification *)notification
{
}

Up to this point, we managed to achieve our goals using plain refactoring techniques. Often, that is enough, and it’s generally a good idea to stop there, because beyond lies metaprogramming, which tends to make the code significantly more obscure. In Objective-C, we generally have runtime tricks and macro-programming using the C pre-processor (well: and code generation). In this case, I decided to give the C preprocessor a try, because I wanted things done at compile-time and the problem was parametrising parts of identifiers, i.e. string processing.

Doing some pattern matching, we have two actual “parameters", the “base” of the notification name ( for example ‘ModelDidChange’ or ‘ModelWasDeleted’ ) and the name of the method to call. So we create a Macro that takes these parameters and applies them to a template of the methods we need:


#define SUBSCRIBE_UNSUBSCRIBE_WITHMETHODNAME( name , notification, theMessage ) \
- (void)subscribeTo##name \
{\
    [self subscribeToNotification:notification usingSelector:@selector(theMessage:)];\
}\
\
- (void)unsubscribeFrom##name \
{\
    [self unsubscribeFromNotification:notification];\
}\
-(void)theMessage:(NSNotification *)notification\
{\
}\

#define SUBSCRIBE_UNSUBSCRIBE( commonName, theMessage ) SUBSCRIBE_UNSUBSCRIBE_WITHMETHODNAME( commonName##Notification, MPWAppNotification##commonName , theMessage )

The first macro has three arguments, a version of the notification name suitable for adding to the method names, the full notification name and the message name. The ‘##’ is the token pasting operator, which allows us to create new lexical tokens out of existing ones. We “need” it in this case because we have commonality we want to express that is on a sub-token, sub-identifier level.

There are a bunch of issues with this approach. First, it is pretty unreadable. You need to terminate every line with backslashes because Macro definitions can only be on a single logical line, the backslashes continue the logical line over physical lines. Dealing with compiler errors and warnings is rather tricky, because the error will be with the result of the macro expansion, which the error message will usually not contain. (You can tell the compiler to run just the pre-processor and give you the result, in case you need to debug and can’t do the macro expansion in your head…). Finally, you cannot search for the tokens that get generated by the pre-processor. So for example no command-clicking, and you have to be careful if you ever change one of the notification names.

The advantage is that you get a representation that succinctly states what you want to accomplish, without any duplicated boilerplate. No duplication also means no chance to get those duplicates wrong: the first few code samples in this post actually contain an error. (MPWAppNotificationModelWasDeleted also sends the modelDidChange: message instead of its own modelWasDeleted:) This error, almost certainly a copy-and-paste bug, was actually in the original code and had gone unnoticed for months until I tried to remove that duplication.

I don't know about you, but my eyes just glaze over when scanning large swathes of mostly duplicated code.

Anyway, with the Macros, our help methods are now defined as follows:


SUBSCRIBE_UNSUBSCRIBE( ModelDidChange, modelDidChange )
SUBSCRIBE_UNSUBSCRIBE( ModelWasDeleted, modelWasDeleted )

SUBSCRIBE_UNSUBSCRIBE( ActivityCountDidChange, activityCountDidChange )
SUBSCRIBE_UNSUBSCRIBE( ObjectIdDidChange, objectIdDidChange )
SUBSCRIBE_UNSUBSCRIBE( UserDidLogin, userDidLogin )

Note that previously we showed just two notifications, now we are showing all five, which would have been quite unwieldy before.

Refactor IV

As is typical when you remove duplication, you notice more duplication, because stuff is closer together: the two parameters are almost identical, except for capitalisation. This doesn't have to be the case, but it is a good convention to have. Alas, the pre-processor can’t change the capitalisation of strings so we are stuck.

To recap, this was a process of detecting duplication, removing that duplication using available mechanisms and then detecting more duplication, over several iterations. What then usually happens is that you either manage to remove all the duplication, or you notice that you cannot reduce duplication any further. Not being able to remove duplication typically means that you have reached limitations of your language, with metaprogramming facilities allowing you to push those limitations at least a little, and sometimes quite a bit.

This particular exploration relied on a somewhat formulaic use of NSNotificationCenter, one that always matches a notification with the same message. Since messages are already late-bound, this doesn't really present much of a restriction and seems a useful simplification, and it is a simplification that I've seen used widely in practice. The other pattern is that specific classes typically observe notifications for essentially their entire lifetime, meaning that the ability to dynamically turn notifications on and off is often not needed.

If we imagine language support for notifications (the implicit invocation architectural style), we would probably like to be able to declare notifications, declare that a class listens to a specific notification and and check conformance. This would make usage even more convenient than the macros we refactored to, while at the same time addressing the problems of the macro solution.

And of course that is what Notification Protocols became: a slight misappropriation of Objective-C and Swift Protocols to get something that is extremely close to actual language support. I can now actually declare my notifications as almost a programming-language thing (at least better than a string), and also specify the relationship between a message and that notification, which otherwise is purely lost in convention:


@protocol ModelDidChange <MPWNotificationProtocol>

-(void)modelDidChange:(NSNotifiction*)notification;

@end

I can also easily and declaratively specify that a particular class listens to a notification:
@interface NotifiedView:NSView <ModelDidChange>

@end

Not only does this remove the problems with the Macro approach, unreadability and untraceability, it is actually quite a bit better than the approach without Macros, all while being at least as compact. Last not least, notification sending is not just compact, but also obvious and at least somewhat compiler-checked:
[@protocol(ModelDidChange) notify];

This is very, very close to native language support, due to some lucky coincidences and the wise decision to make Protocols first class objects in Objective-C. It also does not match the flexibility of the NSNotificationCenter APIs, but I doubt whether that additional flexibility is actually used/useful.

Had I not experimented with removing duplication, and iterated on removing duplication, I never would have come to the point where notification protocols became an obvious solution. And now that I have notification protocols, I also have a good idea what actual language support should look like, because I've been using something pretty close.

So for me, plain old refactoring, different kinds of metaprogramming and language support all live on a continuum of improving expressiveness, and all are, or at least should be part of our feedback loops. How can we improve our language so we don't need metaprogramming for common use cases? How can we improve our metaprogramming facilities so they are sufficient and we don't feel a need for replacing them with actual language support? How can we do both, turn things that currently require metaprogramming look more like plain base-level programming while making it integrate better than metaprogramming solutions?

That, Detective, is the right question. Program terminated

Wednesday, October 31, 2018

Notification Protocols from Swift

When I introduced Notification Protocols, I mentioned that they should be Usable from Swift.

This is code from a sample Swift Playground that shows how to do this. The Playground needs to have access to MPWFoundation, for example by being inside a Xcode workspace that includes it.


import Foundation
import MPWFoundation

@objc protocol ModelDidChange:MPWNotificationProtocol {
    func modelDidChange( payload:NSNotification );
}

class MyView : NSObject,ModelDidChange {
    override public init() {
        super.init()
        self.installProtocolNotifications()
    }
    func modelDidChange( payload:NSNotification ) {
        print("I was notified, self: \(self) payload: \"\(payload.object!)\"")
    }
}

let target1 = MyView()
let target2 = MyView()

sendProtocolNotification( ModelDidChange.self , "The Payload")

A brief walkthrough:
  1. We declare a ModelDidChange notification protocol.
  2. We indicate that it is a notification protocol by adopting MPWNotificationProtocol.
  3. The notification protocol has the message modelDidChange
  4. We declare that MyView conforms to ModelDidChange. This means we declaratively indicate that we receive ModelDidChange notifications, which will result in MyView instance being sent modelDidChange() messages.
  5. It also means that we have to implement modelDidChange(), which will be checked by the compiler.
  6. We need to call installProtocolNotifications() in order to activate the declared relationships.
  7. We use sendProtocolNotification() with the Protocol object as the argument and a payload.
  8. The fact that we need a protocol object instead of any old String gives us additional checking.
Enjoy!

Wednesday, July 4, 2018

A one word change to the C standard to make undefined behavior sane again

A lot has been written on C undefined behavior, some of it by myself and a lot more by people who know a lot more about compilers than I do. However, I now believe that a seemingly innocuous but far-reaching change to the standard has given permission for the current craziness, and I think undoing that change could be a start in rectifying the situation.

Proposal

In section 3.4.3, change the word "possible" back to "permissible", the way it was in C89.

Background

In all versions of the standard I have checked, section 3.4.3 defines the term "undefined behavior".
undefined behavior
behavior, upon use of a nonportable or erroneous program construct or of erroneous data, for which this International Standard imposes no requirements

So that seems pretty clear, the compiler can do whatever it wants. But wait, there is a second paragraph that clarifies:

Permissible undefined behavior ranges from ignoring the situation completely with unpredictable results, to behaving during translation or program execution in a documented manner characteristic of the environment (with or without the issuance of a diagnostic message), to terminating a translation or execution (with the issuance of a diagnostic message).
So it's not a free-for-all, in fact it is pretty clear about what the compiler is and is not allowed to do, as there are essentially three options:
  1. It "ignores" the situation completely, so if the CPU hardware produces an overflow or underflow on an arithmetic operation, well that's what you get. If you write to a string constant, the compiler emits the write and either the string constant might get changed if there is no memory protection for string constants or you might get a segfault if there is.
  2. It "behaves in a manner characteristic of the environment". So no "demons flying out of your nose" nonsense, and no arbitrary transformations of programs. And whatever you do, you have to document it, though you are not required to print a diagnostic.
  3. It can terminate with an error message.
I would suggest that current behavior is not one of these three, and it's not in the range bounded by these three either. It is clearly outside that defined range of "permissible" undefined behavior.

But of course compiler writers have an out, because more recent versions of the standard changed the word "permissible", which clearly restricts what you are allowed to do, to "possible", which means this is just an illustration of what might happen.

So let's change the word back to "permissible".

Saturday, April 21, 2018

Even Simpler Notifications: Notification Messages

The Notification Protocols implementation I showed yesterday is actually just one in a series of implementations that came out of thinking about notifications.

The basic insight, and it is a pretty trivial one, is that a notification is just a broadcast message. So when we have real messaging, which we do, notifications consist of sending a message to a dynamically defined set of receivers.

How can we send a message, for example -modelDidChange: to a set of receivers? With HOM that's also trivial:


[[receivers do] modelDidChange:aPath];

So how do we define the set of receivers? Well, the collection is defined as all the objects listening to a particular notification, in this case this notification is the message. So instead of do, we need a notify: HOM that collects all the receivers registered for that message:


[[center notifyListenersOf:@selector(modelDidChange:)] modelDidChange:aPath];

But of course this is redundant, we already have the modelDidChange: message in the argument message of the HOM. So we can remove the argument from the notify HOM:


[[center notify] modelDidChange:aPath];

A trivial notification center now is just a dictionary of arrays of receivers, with the keys of the dictionary being the message names. With that dictionary called receiversByNotificationName, the notify HOM would look as follows:
DEFINE_HOM(notify, void)
{
    NSString *key = NSStringFromSelector([invocation selector]);
    NSArray *receivers = self.receiversByNotificationName[key];
    [[invocation do] invokeWithTarget:[receivers each]];
}

Of course, you can also integrate with NSNotificationCenter by using the converted message name as the NSNotification name.

You would then register for the notification with the following code:


-(void)registerNotificationMessage:(SEL)aMessage
{
    [[NSNotificationCenter defaultCenter] addObserver:self selector:aMessage name:NSStringFromSelector(aMessage) object:nil];
}

The HOM code is a little more involved, I'll leave that as an exercise for the reader.

So, by taking messaging seriously, we can get elegant notifications in even less code than Notification Protocols. The difference is that Notification Protocols actually let you declare adoption of a notification statically in your class's interface, and have that declaration be meaningful.


@interface MyGreatView : NSView <ModelDidChangeNotification>

Another aspect is that while HOM is almost certainly too much for poor old Swift to handle, it should be capable of dealing with Notification Protocols. It is!

Wednesday, October 7, 2015

Jitterdämmerung

So, Windows 10 has just been released, and with it Ahead Of Time (AOT) compilation feature .NET native. Google also just recently introduced ART for Android, and I just discovered that Oracle is planning an AOT compiler for mainstream Java.

With Apple doggedly sticking to Ahead of Time Compilation for Objective-C and now their new Swift, JavaScript is pretty much the last mainstream hold-out for JIT technology. And even in JavaScript, the state-of-the-art for achieving maximum performance appears to be asm.js, which largely eschews JIT techniques by acting as object-code in the browser represented in JavaScript for other languages to be AOT-compiled into.

I think this shift away from JITs is not a fluke but was inevitable, in fact the big question is why it has taken so long (probably industry inertia). The benefits were always less than advertised, the costs higher than anticipated. More importantly though, the inherent performance characteristics of JIT compilers don't match up well with most real world systems, and the shift to mobile has only made that discrepancy worse. Although JITs are not going to go away completely, they are fading into the sunset of a well-deserved retirement.

Advantages of JITs less than promised

I remember reading the copy of the IBM Systems Journal on Java Technology back in 2000, I think. It had a bunch of research articles describing super amazing VM technology with world-beating performance numbers. It also had a single real-world report from IBM's San Francisco project. In the real world, it turned out, performance was a bit more "mixed" as they say. In other words: it was terrible and they had to do an incredible amount of work for the system be even remotely usable.

There was also the experience of the New Typesetting System (NTS), a rewrite of TeX in Java. Performance was atrocious, the team took it with humor and chose a snail as their logo.

Nts at full speed One of the reasons for this less than stellar performance was that JITs were invented for highly dynamic languages such as Smalltalk and Self. In fact, the Java Hotspot VM can be traced in a direct line to Self via the Strongtalk system, whose creator Animorphic Systems was purchased by Sun in order to acquire the VM technology.

However, it turns out that one of the biggest benefits of JIT compilers in dynamic languages is figuring out the actual types of variables. This is a problem that is theoretically intractable (equivalent to the halting problem) and practically fiendishly difficult to do at compile time for a dynamic language. It is trivial to do at runtime, all you need to do is record the actual types as they fly by. If you are doing Polymorphic Inline Caching, just look at the contents of the caches after a while. It is also largely trivial to do for a statically typed language at compile time, because the types are right there in the source code!

So gathering information at runtime simply isn't as much of a benefit for languages such as C# and Java as it was for Self and Smalltalk.

Significant Costs

The runtime costs of a JIT are significant. The obvious cost is that the compiler has to be run alongside the program to be executed, so time compiling is not available for executing. Apart from the direct costs, this also means that your compiler is limited in the types of analyses and optimizations it can do. The impact is particularly severe on startup, so short-lived programs like for example the TeX/NTS are severely impacted and can often run slower overall than interpreted byte-code.

In order to mitigate this, you start having to have multiple compilers and heuristics for when to use which compilers. In other words: complexity increases dramatically, and you have only mitigated the problem somewhat, not solved it.

A less obvious cost is an increase in VM pressure, because the code-pages created by the JIT are "dirty", whereas executables paged in from disk are clean. Dirty pages have to be written to disk when memory is required, clean pages can simply be unmapped. On devices without a swap file like most smartphones, dirty vs. clean can mean the difference between a few unmapped pages that can be swapped in later and a process getting killed by the OS.

VM and cache pressure is generally considered a much more severe performance problem than a little extra CPU use, and often even than a lot of extra CPU use. Most CPUs today can multiply numbers in a single cycle, yet a single main memory access has the CPU stalled for a hundred cycles or more.

In fact, it could very well be that keeping non-performance-critical code as compact interpreted byte-code may actually be better than turning it into native code, as long as the code-density is higher.

Security risks

Having memory that is both writable and executable is a security risk. And forbidden on iOS, for example. The only exception is Apple's own JavaScript engine, so on iOS you simply can't run your own JITs.

Machines got faster

On the low-end of performance, machines have gotten so fast that pure interpreters are often fast enough for many tasks. Python is used for many tasks as is and PyPy isn't really taking the Python world by storm. Why? I am guessing it's because on today's machines, plain old interpreted Python is often fast enough. Same goes for Ruby: it's almost comically slow (in my measurements, serving http via Sinatra was almost 100 times slower than using libµhttp), yet even that is still 400 requests per second, exceeding the needs of the vast majority of web-sites including my own blog, which until recently didn't see 400 visitors per day.

The first JIT I am aware of was Peter Deutsch's PS (Portable Smalltalk), but only about a decade later Smalltalk was fine doing multi-media with just a byte-code interpreter. And native primitives.

Successful hybrids

The technique used by Squeak: interpreter + C primitives for heavy lifting, for example for multi-media or cryptography has been applied successfully in many different cases. This hybrid approach was described in detail by John Ousterhout in Scripting: Higher-Level Programming for the 21st Century: high level "scripting" languages are used to glue together high performance code written in "systems" languages. Examples include Numpy, but the ones I found most impressive were "computational steering" systems apparently used in supercomputing facilities such as Oak Ridge National Laboratories. Written in Tcl.

What's interesting with these hybrids is that JITs are being squeezed out at both ends: at the "scripting" level they are superfluous, at the "systems" level they are not sufficient. And I don't believe that this idea is only applicable to specialized domains, though there it is most noticeable. In fact, it seems to be an almost direct manifestation of the observations in Knuth's famous(ly misquoted) quip about "Premature Optimization":

Experience has shown (see [46], [51]) that most of the running time in non-IO-bound programs is concentrated in about 3 % of the source text.

[..] The conventional wisdom shared by many of today's software engineers calls for ignoring efficiency in the small; but I believe this is simply an overreaction to the abuses they see being practiced by penny-wise-and-pound-foolish programmers, who can't debug or maintain their "optimized" programs. In established engineering disciplines a 12 % improvement, easily obtained, is never considered marginal; and I believe the same viewpoint should prevail in soft- ware engineering. Of course I wouldn't bother making such optimizations on a one-shot job, but when it's a question of preparing quality programs, I don't want to restrict myself to tools that deny me such efficiencies.

There is no doubt that the grail of efficiency leads to abuse. Programmers waste enormous amounts of time thinking about, or worrying about, the speed of noncritical parts of their programs, and these attempts at efficiency actually have a strong negative impact when debugging and maintenance are considered. We should forget about small efficiencies, say about 97% of the time: premature optimization is the root of all evil.

Yet we should not pass up our opportunities in that critical 3 %. A good programmer will not be lulled into complacency by such reasoning, he will be wise to look carefully at the critical code; but only after that code has been identified. It is often a mistake to make a priori judgments about what parts of a program are really critical, since the universal experience of programmers who have been using measurement tools has been that their intuitive guesses fail. After working with such tools for seven years, I've become convinced that all compilers written from now on should be designed to provide all programmers with feedback indicating what parts of their programs are costing the most; indeed, this feedback should be supplied automatically unless it has been specifically turned off.

[..]

(Most programs are probably only run once; and I suppose in such cases we needn't be too fussy about even the structure, much less the efficiency, as long as we are happy with the answers.) When efficiencies do matter, however, the good news is that usually only a very small fraction of the code is significantly involved.

For the 97%, a scripting language is often sufficient, whereas the critical 3% are both critical enough as well as small and isolated enough that hand-tuning is possible and worthwhile.

I agree with Ousterhout's critics who say that the split into scripting languages and systems languages is arbitrary, Objective-C for example combines that approach into a single language, though one that is very much a hybrid itself. The "Objective" part is very similar to a scripting language, despite the fact that it is compiled ahead of time, in both performance and ease/speed of development, the C part does the heavy lifting of a systems language. Alas, Apple has worked continuously and fairly successfully at destroying both of these aspects and turning the language into a bad caricature of Java. However, although the split is arbitrary, the competing and diverging requirements are real, see Erlang's split into a functional language in the small and an object-oriented language in the large.

Unpredictable performance model

The biggest problem I have with JITs is that their performance model is extremely unpredictable. First, you don't know when optimizations are going to kick in, or when extra compilation is going to make you slower. Second, predicting which bits of code will actually be optimized well is also hard and a moving target. Combine these two factors, and you get a performance model that is somewhere between unpredictable and intractable, and therefore at best statistical: on average, your code will be faster. Probably.

While there may be domains where this is acceptable, most of the domains where performance matters at all are not of this kind, they tend to be (soft) real time. In real time systems average performance matters not at all, predictably meeting your deadline does. As an example, delivering 80 frames in 1 ms each and 20 frames in 20 ms means for 480ms total time means failure (you missed your 60 fps target 20% of the time) whereas delivering 100 frames in 10 ms each means success (you met your 60 fps target 100% of the time), despite the fact that the first scenario is more than twice as fast on average.

I really learned this in the 90ies, when I was doing pre-press work and delivering highly optimized RIP and Postscript processing software. I was stunned when I heard about daily newspapers switching to pre-rendered, pre-screened bitmap images for their workflows. This is the most inefficient format imaginable for pre-press work, with each page typically taking around 140 MB of storage uncompressed, whereas the Postscript source would typically be between 1/10th and 1/1000th of the size. (And at the time, 140MB was a lot even for disk storage, never mind RAM or network capacity.

The advantage of pre-rendered bitmaps is that your average case is also your worst case. Once you have provisioned your infrastructure to handle this case, you know that your tech stack will be able to deliver your newspaper on time, no matter what the content. With Postscript (and later PDF) workflows, you average case is much better (and your best case ridiculously so), but you simply don't get any bonus points for delivering your newspaper early. You just get problems if it's late, and you are not allowed to average the two.

Eve could survive and be useful even if it were never faster than, say, Excel. The Eve IDE, on the other hand, can't afford to miss a frame paint. That means Imp must be not just fast but predictable - the nemesis of the SufficientlySmartCompiler.
I also saw this effect in play with Objective-C and C++ projects: despite the fact that Objective-C's primitive operations are generally more expensive, projects written in Objective-C often had better performance than comparable C++ projects, because the Objective-C's performance model was so much more simple, obvious and predictable.

When Apple was still pushing the Java bridge, Sun engineers did a stint at a WWDC to explain how to optimize Java code for the Hotspot JIT. It was comical. In order to write fast Java code, you effectively had to think of the assembler code that you wanted to get, then write the Java code that you thought might net that particular bit of machine code, taking into account the various limitations of the JIT. At that point, it is a lot easier to just write the damn assembly code. And vastly more predictable, what you write is what you get.

Modern JITs are capable of much more sophisticated transformations, but what the creators of these advanced optimizers don't realize is that they are making the problem worse rather than better. The more they do, the less predictable the code becomes.

The same, incidentally, applies to SufficentlySmart AOT compilers such as the one for the Swift language, though the problem is not quite as severe as with JITs because you don't have the dynamic component. All these things are well-intentioned but all-in-all counter-productive.

Conclusion

Although the idea of Just in Time Compilers was very good, their area of applicablity, which was always smaller than imagined and/or claimed, has shrunk ever further due to advances in technology, changing performance requirements and the realization that for most performance critical tasks, predictability is more important than average speed. They are therefore slowly being phased out in favor of simpler, generally faster and more predictable AOT compilers. Although they are unlikely to go away completely, their significance will be drastically diminished.

Alas, the idea that writing high-level code without any concessions to performance (often justified by misinterpreting or simply just misquoting Knuth) and then letting a sufficiently smart compiler fix it lives on. I don't think this approach to performance is viable, more predictability is needed and a language with a hybrid nature and the ability for the programmer to specify behavior-preserving transformations that alter the performance characteristics of code is probably the way to go for high-performance, high-productivity systems. More on that another time.

What do you think? Are JITs on the way out or am I on crack? Should we have a more manual way of influencing performance without completely rewriting code or just trusting the SmartCompiler?

Update: Nov. 13th 2017

The Mono Project has just announced that they are adding a byte-code interpreter: "We found that certain programs can run faster by being interpreted than being executed with the JIT engine."

Update: Mar. 25th 2021

Facebook has created an AOT compiler for JavaScript called Hermes. They report significant performance improvements and reductions in memory consumption (with of course some trade-offs for specific benchmarks).

Speaking of JavaScript, Google launhed Ignition in 2017, a JS bytecode interpreter for faster startup and better performance on low-memory devices. It also did much better in terms of pure performance than they anticipated.

So in 2019, Google introduced their JIT-Less JS engine. Not even an AOT compiler, just a pure interpreter. While seeing slowdowns in the 20-80% range on synthetic benchmarks, they report real-world performance only a few percent lower than their high-end, full-throttle TurboFan JIT.

Oh, how could I forget WebAssembly? "One of the reasons applications target WebAssembly is to execute on the web with predictable high performance. ".

I've also been told by People Who Know™ that the super-amazing Graal JIT VM for Java is primarily used for its AOT capabilities by customers. This is ironic, because the aptly named Graal pretty much is the Sufficiently Smart Compiler that was always more of a joke than a real goal...but they achieved it nonetheless, and as a JIT no less! And now that we have it, it turns out customers mostly don't care. Instead, they care about predictability, start-up performance and memory consumption.

Last not least, Apple's Rosetta 2 translator for running Intel binaries on ARM is an AOT binary-to-binary translator. And it is much faster, relatively, than the original Rosetta or comparable JIT-based binary translators, with translated Intel binaries clocking in at around 80% the speed of native ARM binaries. Combined with the amazing performance of the M1, this makes M1 Macs frequently faster than Intel Macs at running Intel Mac binaries. (Of course it also includes a (much slower) JIT component as a fallback when the AOT compiler can't figure things out. Like when the target program is itself a JIT... )

Update: Oct. 3rd 2021

It appears that 45% of CVEs for V8 and more than half of "in the wild" Chrome exploits abused a JIT bug, which is why Microsoft is experimenting with what they call SDSM (Super Duper Secure Mode). What's SDSM? JavaScript without the JIT.

Unsurprisingly at this point, performance is affected far less than one might have guessed, even for the benchmarks, and even less in real-world tasks: "Anecdotally, we find that users with JIT disabled rarely notice a difference in their daily browsing.".

Update: Mar. 30th 2023

To my eyes, this looks like startup costs, much of which will be jit startup costs.

HN user jigawatts appears to confirm my suspicion:

Teams is an entire web server written in an interpreted language compiled on the fly using a "Just in Time" optimiser (node.js + V8) -- coupled to a web browser that is basically an entire operating system. You're not "starting Teams.exe", you are deploying a server and booting an operating system. Seen in those terms, 9 seconds is actually pretty good. Seen in more... sane terms, showing 1 KB of text after 9 seconds is about a billion CPU instructions needed per character.
. It also looks to be the root problem, well one of the root problems with Visual Studio's launch time.

Update: Apr. 1st 2023

"One of the most annoying features of Julia is its latency: The laggy unresponsiveness of Julia after starting up and loading packages." -- Julia's latency: Past, present and future

I find it interesting that the term "JIT" is never mentioned in the post, I guess it's just taken as a given.

I am pretty sure I've missed some developments.

Sunday, October 4, 2015

Are Objects Already Reactive?


TL;DR: Yes, obviously.

My post from last year titled The Siren Call of KVO and Cocoa Bindings has been one of my most consequential so far. Apart from being widely circulated and discussed, it has also been a focal point of my ongoing work related to Objective-Smalltalk. The ideas presented there have been central to my talks on software architecture, and I have finally been able to present some early results I find very promising.

Alas, with the good always comes the bad, and some of the reactions (sic) have no been quite so positive. For example, consider the following I wrote:

[..] Adding reactivity to an object-oriented language is, at first blush, non-sensical and certainly causes confusion [because] whereas functional programming, which is per definition static/timeless/non-reactive, really needs something to become interactive, reactivity is already inherent in OO. In fact, reactivity is the quintessence of objects: all computation is modeled as objects reacting to messages.
This seemed quite innocuous, obvious, and completely uncontroversial to me, but apparently caused a bit of a stir with at least some of the creators of ReactiveCocoa:

Ouch! Of course I never wrote that "nobody" needs FRP: Functional Programming definitely needs FRP or something like it, because it isn't already reactive like objects are. Second, what I wrote is that this is non-sensical "at first blush" (so "on first impression"). Idiomatically, this phrase is usually sets up a " ...but on closer examination", and lo-and-behold, almost the entire rest of the post talks about how the related concepts of dataflow and dataflow-constraints are highly desirable.

The point was and is (obviously?) a terminological one, because the existing term "reactivity" is being overloaded so much that it confuses more than it clarifies. And quite frankly, the idea of objects being "reactive" is (a) so self-evident (you send a message, the object reacts by executing method which usually sends more messages) and (b) so deeply ingrained and basic that I didn't really think about it much at all. So obviously, it could very well be that I was wrong and that this was "common sense" to me in the Einsteinian sense.

I will explore the terminological confusion more in later posts, but suffice it to say that Conal Elliott contacted the ReactiveCocoa guys to tell them (politely) that whatever ReactiveCocoa was, it certainly wasn't FRP:

I'm hoping to better understand how the term "Functional Reactive Programming" gets applied to systems that are so far from the original definition and principles (continuous time with precise & simple mathematical meaning)
He also wrote/talked more about this confusion in his 2015 talk "Essence and Origins of FRP":
The term has been used incorrectly to describe systems like Elm, Bacon, and Reactive Extensions.
Finally, he seems to agree with me that the term "reactive" wasn't really well chosen for the concepts he was going after:

What is Functional Reactive Programming:  Something of a misnomer.  Perhaps Functional temporal programming

So having established the the term "reactive" is confusing when applied to whatever it is that ReactiveCooca is or was trying to be, let's have a look at how and whether it is applicable to objects. The Communication of the ACM "Special issue on object-oriented experiences and future trends" from 1995 has the following to say:

A group of leading experts from industry and academia came together last fall at the invitation of IBM and ACM to ponder the primary areas of future needs in software support for object-based applications.

[..]

In the future, as you talk about having an economy based on these entities (whether we call them “objects” or we call them something else), they’re going to have to be more proactive. Whether they’re intelligent agents or subjective objects, you enable them with some responsibility and they get something done for you. That’s a different view than we have currently where objects are reactive; you send it a message and it does something and sends something back.

But lol, that's only a group of leading researchers invited by IBM and the ACM writing in arguably one of the most prestigious computing publications, so what do they know? Let's see what the Blue Book from 1983 has to say when defining what objects are:

The set of messages to which an object can respond is called its interface with the rest of the system. The only way to interact with an object is through its interface. A crucial property of an object is that its private memory can be manipulated only by its own operations. A crucial property of messages is that they are the only way to invoke an object's operations. These properties insure that the implementation of one object cannot depend on the internal details of other objects, only on the messages to which they respond.
So the crucial definition of objects according the creators of Smalltalk is that they respond to messages. And of course if you check a dictionary or thesaurus, you will find that respond and react are synonyms. So the fundamental definition of objects is that they react to messages. Hmm...that sounds familiar somehow.

While those are seemingly pretty influential definitions, maybe they are uncommon? No. A simple google search reveals that this definition is extremely common, and has been around for at least the last 30-40 years:

A conventional statement of this principle is that a program should never declare that a given object is a SmallInteger or a LargeInteger, but only that it responds to integer protocol.
But lol, what do Adele Goldberg, David Robson or Dan Ingalls know about Object Oriented Programming? After all, we have one of the creators of ReactiveCocoa here! (Funny aside: LinkedIn once asked me "Does Dan Ingalls know about Object Oriented Programming?" Alas there wasn't a "Are you kidding me?" button, so I lamely clicked "Yes").

Or maybe it's only those crazy dynamic typing folks that no-one takes seriously these days? No.

So the only thing relevant thing for typing purposes is how an object reacts to messages.
Here's a section from the Haiku/BeOS documentation:
A BHandler object responds to messages that are handed to it by a BLooper. The BLooper tells the BHandler about a message by invoking the BHandler's MessageReceived() function.
A book on OO graphics:

The draw object reacts to messages from the panel, thereby creating an IT to cover the canvas.
CS lecture on OO:
Properties implemented as "fields" or "instance variables"
  • constitute the "state" of the object
  • affect how object reacts to messages
Heck, even the Apple Cocoa/Objective-C docs speak of "objects responding to messages", it's almost like a conspiracy.
By separating the message (the requested behavior) from the receiver (the owner of a method that can respond to the request), the messaging metaphor perfectly captures the idea that behaviors can be abstracted away from their particular implementations.
Book on OO Analysis and Design:
As the object structures are identified and modeled, basic processing requirements for each object can be identified. How each object responds to messages from other objects needs to be defined.
An object's behavior is defined by its message-handlers(handlers). A message-handler for an object responds to messages and performs the required actions.
CLIPS - object-oriented programming

Or maybe this is an old definition from the 80ies and early 90ies that has fallen out of use? No.

The behavior of related collections of objects is often defined by a class, which specifies the state variables of an objects (its instance variables) and how an object responds to messages (its instance methods).
Methods: Code blocks that define how an object responds to messages. Optionally, methods can take parameters and generate return values.
Cocoa, by Richard Wentk, 2010

The main difference between the State Machine and the immutable is the way the object reacts to messages being sent (via methods invoked on the public interface). Whereas the State Machine changes its own state, the Immutable creates a new object of its own class that has the new state and returns it.
So to sum up: classic OOP is definitely reactive. FRP is not, at least according to the guy who invented it. And what exactly things like ReactiveCocoa and Elm etc. are, I don't think anyone really knows, except that they are not even FRP, which wasn't, in the end reactive.

Tune in for "What the Heck is Reactive Programming, Anyway?"

As always, comments welcome here or on HN

Wednesday, August 26, 2015

What Happens to OO When Processors Are Free?

A while ago, I presented as a crazy thought experiment the idea of using Montecito's transistor budget for creating a chip with tens of thousand of ARM cores. Well, it seems the idea wasn't so crazy after all: The SpiNNaker project is trying to build a system with a million ARM CPUs, and it is designing a custom chip with lots of ARM cores on it.

Of course they only have 1/6th the die area of the Montecito and are using a conservative 135nm process rather than the 95nm of the Montecito or the 15nm that is state of the art, so they have a much lower transistor budget. They also use the later ARM 9 core and add 54 SRAM banks with 32KB each (from the die picture, 3 per core), so in the end they "only" put 18 cores on the chip, rather than many thousands. Using a state of the art 14nm process would mean roughly 100 times more transistors, a Montecito-sized die another factor of six. At that point, we would be at 10000 cores per chip, rather than 18.

One of the many interesting features of the SpiNNaker project is that "the micro-architecture assumes that processors are ‘free’: the real cost of computing is energy." This has interesting consequences for potentially simplifying object- or actor-oriented programming. Alan Kay's original idea of objects was to scale down the concept of "computer", so every object is essentially a self-contained computer with CPU and storage, communicating with its peers via messages. (Erlang is probably the closest implementation of this concept).

In our core-scarce computing environments, this had to be simulated by multiplexing all (or most) of the objects onto a single von Neumann computer, usually with a shared address space. If cores are free and we have them in the tens of thousands, we can start entertaining the idea of no longer simulating object-oriented computing, but rather of implementing it directly by giving each object its own core and attached memory. Yes, utilization of these cores would probably be abysmal, but with free cores low utilization doesn't matter, and low utilization (hopefully) means low power consumption.

Even at 1% utilization, 10000 cores would still mean throughput equivalent to 100 ARM 9 cores running full tilt, and I am guessing pretty low power consumption if the transistors not being used are actually off. More important than 100 core-equivalents running is probably the equivalent of 100 bus interfaces running at full tilt. The aggregate on-chip memory bandwidth would be staggering.

You could probably also run the whole thing at lower clock frequencies, further reducing power. With each object having around 96KB of private memory to itself, we would probably be looking at coarser-grained objects, with pure data being passed between the objects (Objective-C or Erlang style) and possibly APL-like array extensions (see OOPAL). Overall, that would lead to de-emphasis of expression-oriented programming models, and a more architectural focs.

This sort of idea isn't new, the Transputer got there in the late 80ies, but it was conceived when Moore's law didn't just increase transistor counts, but also clock-frequencies, and so Intel could always bulldozer away more intelligent architectures with better fabs. This has stopped, clock-frequencies have been stagnant for a while and even geometries are starting to stutter. So maybe now the time for intelligent CPU architectures has finally come, and with it the impetus for examining our assumptions about programming models.

As always, comments welcome here or on Hacker News.

UPDATE: The kilo-cores are here:

  • Kilocore: 1000 processors, 1.78 Trillion ops/sec, and at 1.78pJ/Op super power-efficient, so at 150 GOps/s only uses 0.7 watts. On a 32nm process, so not yet maxed out.
  • GRVI Phalanx joins The Kilocore Club: 1680 cores.
No reports of any of them running actors, but ensembles might work :-)